๐Ÿ“Set theory: functions

  • function: f:Aโ†’Bf : A \to B is a function iff โˆ€xโˆˆA.โˆƒ!yโˆˆBโˆ‹f(x)=y\forall x \in A. \exists! y \in B \ni f(x) = y (i.e., it must be total)

    • AA is domain

    • BB is codomain

    • Image of function ff is a set of possible values (yโ€™s)

      • yโˆˆImage(f)โ€…โ€ŠโŸบโ€…โ€ŠโˆƒxโˆˆAโˆ‹f(x)=yy \in Image(f) \iff \exists x \in A \ni f(x) = y

  • injective function: f:Aโ†’Bf : A \to B is injective iff โˆ€x1,x2โˆˆA.f(x)=f(y)โ€…โ€ŠโŸนโ€…โ€Šx=y\forall x_1, x_2 \in A. f(x) = f(y) \implies x = y

    • no two xโ€™s map to the same y

  • surjective function: f:Aโ†’Bf : A \to B is surjective iff โˆ€yโˆˆB.โˆƒxโˆˆAโˆ‹f(x)=y\forall y \in B. \exists x \in A \ni f(x) = y

    • for all y, there is an x

  • bijective functions: is a function that is both injective and surjective

    • bijective functions have an inverse

Backlinks